610 research outputs found

    Global protein function prediction in protein-protein interaction networks

    Full text link
    The determination of protein functions is one of the most challenging problems of the post-genomic era. The sequencing of entire genomes and the possibility to access gene's co-expression patterns has moved the attention from the study of single proteins or small complexes to that of the entire proteome. In this context, the search for reliable methods for proteins' function assignment is of uttermost importance. Previous approaches to deduce the unknown function of a class of proteins have exploited sequence similarities or clustering of co-regulated genes, phylogenetic profiles, protein-protein interactions, and protein complexes. We propose to assign functional classes to proteins from their network of physical interactions, by minimizing the number of interacting proteins with different categories. The function assignment is made on a global scale and depends on the entire connectivity pattern of the protein network. Multiple functional assignments are made possible as a consequence of the existence of multiple equivalent solutions. The method is applied to the yeast Saccharomices Cerevisiae protein-protein interaction network. Robustness is tested in presence of a high percentage of unclassified proteins and under deletion/insertion of interactions.Comment: 5 pages, 2 figures, 2 supplementary table

    Exact solution of diffusion limited aggregation in a narrow cylindrical geometry

    Full text link
    The diffusion limited aggregation model (DLA) and the more general dielectric breakdown model (DBM) are solved exactly in a two dimensional cylindrical geometry with periodic boundary conditions of width 2. Our approach follows the exact evolution of the growing interface, using the evolution matrix E, which is a temporal transfer matrix. The eigenvector of this matrix with an eigenvalue of one represents the system's steady state. This yields an estimate of the fractal dimension for DLA, which is in good agreement with simulations. The same technique is used to calculate the fractal dimension for various values of eta in the more general DBM model. Our exact results are very close to the approximate results found by the fixed scale transformation approach.Comment: 18 pages RevTex, 6 eps figure

    Ferromagnetic ordering in graphs with arbitrary degree distribution

    Full text link
    We present a detailed study of the phase diagram of the Ising model in random graphs with arbitrary degree distribution. By using the replica method we compute exactly the value of the critical temperature and the associated critical exponents as a function of the minimum and maximum degree, and the degree distribution characterizing the graph. As expected, there is a ferromagnetic transition provided < \infty. However, if the fourth moment of the degree distribution is not finite then non-trivial scaling exponents are obtained. These results are analyzed for the particular case of power-law distributed random graphs.Comment: 9 pages, 1 figur

    Paths to Self-Organized Criticality

    Get PDF
    We present a pedagogical introduction to self-organized criticality (SOC), unraveling its connections with nonequilibrium phase transitions. There are several paths from a conventional critical point to SOC. They begin with an absorbing-state phase transition (directed percolation is a familiar example), and impose supervision or driving on the system; two commonly used methods are extremal dynamics, and driving at a rate approaching zero. We illustrate this in sandpiles, where SOC is a consequence of slow driving in a system exhibiting an absorbing-state phase transition with a conserved density. Other paths to SOC, in driven interfaces, the Bak-Sneppen model, and self-organized directed percolation, are also examined. We review the status of experimental realizations of SOC in light of these observations.Comment: 23 pages + 2 figure

    Non conservative Abelian sandpile model with BTW toppling rule

    Full text link
    A non conservative Abelian sandpile model with BTW toppling rule introduced in [Tsuchiya and Katori, Phys. Rev. E {\bf 61}, 1183 (2000)] is studied. Using a scaling analysis of the different energy scales involved in the model and numerical simulations it is shown that this model belong to a universality class different from that of previous models considered in the literature.Comment: RevTex, 5 pages, 6 ps figs, Minor change

    Crossover component in non critical dissipative sandpile models

    Full text link
    The effect of bulk dissipation on non critical sandpile models is studied using both multifractal and finite size scaling analyses. We show numerically that the local limited (LL) model exhibits a crossover from multifractal to self-similar behavior as the control parameters hexth_{ext} and ϵ\epsilon turn towards their critical values, i.e. hext0+h_{ext} \to 0^+ and ϵϵc\epsilon \to \epsilon_c. The critical exponents are not universal and exhibit a continuous variation with ϵ\epsilon. On the other hand, the finite size effects for the local unlimited (LU), non local limited (NLL), and non local unlimited (NLU) models are well described by the multifractal analysis for all values of dissipation rate ϵ\epsilon. The space-time avalanche structure is studied in order to give a deeper understanding of the finite size effects and the origin of the crossover behavior. This result is confirmed by the calculation of the susceptibility.Comment: 13 pages, 10 figures, Published in European Physical Journal

    Dynamically Driven Renormalization Group Applied to Sandpile Models

    Get PDF
    The general framework for the renormalization group analysis of self-organized critical sandpile models is formulated. The usual real space renormalization scheme for lattice models when applied to nonequilibrium dynamical models must be supplemented by feedback relations coming from the stationarity conditions. On the basis of these ideas the Dynamically Driven Renormalization Group is applied to describe the boundary and bulk critical behavior of sandpile models. A detailed description of the branching nature of sandpile avalanches is given in terms of the generating functions of the underlying branching process.Comment: 18 RevTeX pages, 5 figure
    corecore